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Chapter 4    
Visualization 

 
 
Introduction 
 
 Much of the work conducted in the social sciences concerns a search for patterns 

and regularities in data (Greenacre 1984).  In the course of such a search, a variety of 

formal mathematical and statistical models are generally employed in attempts to better 

describe, understand, and explain aspects of relatively complex social systems.  Whereas 

these models may inform us as to, for example, the goodness-of-fit between any model 

and the original data, it is still incumbent on the researcher to interpret just what that fit 

means or entails from a theoretical standpoint and, more importantly, to communicate 

these interpretations to others.  In yet other instances, we may be interested in exploring 

the relationships among a complex set of social entities in a more exploratory mode in the 

hopes of developing better theoretical insights that may be tested in future analysis or  

research (Glaser and Strauss 1967).  In either case, our need to better interpret our 

explanatory models or our need to produce better explanatory models through an 

exploration of the data can be made simpler and more effective with the use of 

visualization techniques.  There is an abundance of work that clearly shows the 

importance of visual representations in communicating information. But in our attempts 

to communicate and explore we must be concerned about the most effective way to 



represent properties of the network data so that we ensure the most valid interpretation 

possible.   

  

One of the most important constraints on the valid graphical representation of data and 

models concerns human limitations of perception.  There has been a great deal of work 

on this topic and an in-depth discussion is beyond the scope of this chapter.  For a good 

review of issues concerning human color perception and the communication of network 

graphical information see Krempel (2002) or for a more general review see Munzner 

(2000).  For our purposes we seek to explore the ways in which information can be 

communicated in network graphs that provide adequate representations of the various 

properties of nodes and arcs that may aid in a better understanding of network structure.  

In addition we seek means for reducing the complexity of network structures by 

discussing methods for reducing the graphical complexity of network representations 

through such mechanisms as turning on and off nodal or arc clusters or categories in 

order to reveal potentially hidden structural properties.  There has been a long history of 

the use of graphs in the study of social networks.  Freeman (2000) has provided a 

historical overview of network graphs.  

 

One of the first things most people want to do with network data is construct a visual 

representation of it – in short, draw a picture. Seeing the network can provide a 

qualitative understanding that is hard to obtain quantitatively. A network diagram 

consists of a set of points representing nodes and a set of lines representing ties. Various 



characteristics of the points and lines, such as color, size, and shape, can be used 

communicate information about the nodes and the relationships among them.  

 

This chapter discusses the ins and outs of visualizing social networks. In the discussion to 

follow, please note that we distinguish carefully between network elements and their 

graphical representation – i.e., between nodes and the points that represent them, and 

between ties and the lines that represent them. 

 

 

Layout 

 

The layout of a network diagram refers to the position of the points in the diagram. It is 

the most important aspect of network visualization. A badly laid out network diagram 

communicates very little information. As an example, consider the diagram in Figure 

xxx.  
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Figure xx. Random layout of the Games relation in the Bank Wiring room dataset. 
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Figure xxx. Games relation rearranged to reveal structure. 

 
There are three basic kinds of methods used to position nodes: attribute-based scatter 

plotting, scaling or ordination, and graph-theoretic layout algorithms. We call the 



diagrams produced by each of these methods scatters, ordinations, and graph-layouts 

respectively.  

 

The scatters are simply scatter plots based on attributes of the nodes. For example, we 

can plot the points based on the age and income of the corresponding nodes. We then 

draw lines between the points to represent ties. These kinds of displays are useful when 

we are interested in visualizing how attributes of the nodes affect who is connected to 

whom. Scatters are most successful when both attributes are continuous (i.e., not 

categorical like gender or department), and when the attributes in fact do affect who is 

tied with whom. 

 

The ordinations are diagrams based on multivariate statistics techniques such as principal 

components and metric multidimensional scaling. In these layouts, the distances between 

points are meaningful in the sense that there is a known mathematical relationship 

between the distances and the social proximities of the nodes. For example, in metric 

multidimensional scaling, if the data contain information on the strength of ties between 

nodes, the resulting layout positions the points so that the points that near each other are 

the ones that are strongly connected to each other, and the nodes that are far apart are the 

ones that are only weakly connected. When no strengths of tie data are available, the 

standard thing to do is compute geodesic distances between nodes. By geodesic distance 

we mean the number of links in the shortest path between a pair of nodes, what is called 

“degrees of separation” in the popular press. The ordination would then lay out the points 

corresponding to nodes with high geodesic distance between them would be far apart in 



the diagram, and the points corresponding to nodes with short geodesic distance would be 

close together.  

 

Ordinations based on geodesic distance typically work very well in the sense that the 

resulting diagrams are relatively uncluttered, cohesive subgroups are clearly visible, and 

points corresponding to the more central nodes tend to be found in the center of the 

diagram. In addition, they have the advantage of interpretability – we know exactly why 

some nodes are further apart than others.  

 

The graph-layouts are diagrams based on either heuristic or combinatorial optimization 

algorithms that try to locate the points in such a way as to optimize a variety of criteria 

simultaneously. One of these criteria – the correspondence between point distance and 

path distance between nodes – is the same as in ordinations. But the graph-layouts 

include other criteria as well, such as preventing nodes from getting too close to each 

other, minimizing the number of crossed-lines, and a preference for equal-length lines. 

As a result, the distances between points in the diagram no longer correspond in a 1-to-1 

way to path distances between nodes. Thus, we give up a measure of interpretability in 

order to get cleaner diagrams that are easier to read. 

 

It is important to realize that the information in graph-layouts is contained in the pattern 

of which nodes are connected to which others. The locations of the points do not 

necessarily reflect any mathematical or sociological properties – they are chosen based on 

essentially aesthetic criteria. As such, one must not attach too much meaning to the exact 



location of a node since the algorithm is not explicitly trying identify cliques or place 

central nodes in the center.  

 

In addition any arrangement of nodes in space is equally valid as long as no ties are 

added or dropped. In other words, if we drag a node out of the center and put it on the 

periphery (dragging all of its ties along with it), the resulting diagram is no less valid than 

the original. This is not true of scatters and ordinations, in which the physical distances 

between the points have meanings which would be violated if the points were moved 

arbitrarily. 

 

 

Embedding Node Attributes 

 

 

 There are number of obvious means for representing the qualitative or 

quantitative properties of nodes in a network.  In the sections to follow we discuss a 

number issues surrounding the representation of node and arc properties in NETDRAW.  

Nodal color, shape, label, or nodal geometric distortions (e.g., ratios) are all examples of 

possible ways for conveying information of either a nominal or numerical kind.  Both 

qualitative and quantitative information can be simultaneously displayed at a given node 

as, for example, when a node’s color represents group affiliation while size reflects the 

magnitude of some nodal property.  Whereas there are a whole range of possibilities, one 

must be aware of the interpretability and complexity of graphs as more and more colors 



and shapes are added.  Some work has suggested that no more than six colors should be 

used in any computer graph (Derefeldt and Marmolin 1981) although others have 

suggested the maximum may be more like nine (Smallman and Boynton 1990).  Much of 

this will depend on the size and complexity (e.g., density) of the network and the number 

of attributes to be explored.  However, as the number of nodal attributes increase, the 

ability to conduct dyadic assessments of connections among clustered attributes (e.g., the 

linkages between republicans and democrats) can become cumbersome due to the 

number of permutations.  Thus, care should be exercised in the selection and number of 

attributes to be explored.      

  

NETDRAW has the ability to switch among lists of node attributes and aspects of node 

attributes.  In the former the graph author can predefine multiple color, size, or shape lists 

for nodes to represent different attribute sets to be represented or explored (e.g., a color 

list based on sets of structurally equivalent nodes and one based on regularly equivalent 

nodes). The viewer can then interactively switch among lists thereby facilitating 

comparisons among nodal attribute sets.  The program allows for the comparisons of the 

degree to which nodes have specified attributes from a list of such attributes. Thus, for 

example, nodal color gradients can be used to represent the degree to which nodes have a 

specific attribute (e.g., degree of depression, anxiety , tension, etc. among actors in a 

network).     

 

As stated above, points have a number of properties that can be put to use to 

communicate information about the nodes they represent. For example, nodes can be 



different sizes and shapes. The shapes can have rims of varying widths and colors. Nodes 

can have textual labels attached, which can have varying sizes and fonts. Each of these 

properties can be mapped to a node attribute, although it is our experience that using 

more than two properties at a time can be more distracting than informative. 

 

In general, it is best to reserve size differences for representing continuous attributes such 

as age or rank, while using color and shape differences to represent categorical attributes 

like gender or department.  

 

An example is given in Figure xx, which depicts the CAMPNET dataset. The size of the 

nodes is used to represent the betweenness centrality of each node (see the chapter on 

centrality for an explanation), while the shape of nodes is used to represent gender.  
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Figure xxx. Circle shapes indicate women and square shapes indicate men. Size corresponds to each node’s 

betweenness centrality. 
 
Color can also be used to represent the nominal properties of nodes in terms of such 

things as gender, membership in groups, political party affiliation, tribal membership, etc.   

Any qualitative property of the node can be represented by color.  There are a number of 

considerations for the selection of colors that may either facilitate or hinder the 

communication of information.  Aside from the number of colors, there may be colors 

that are more intuitive or culturally appropriate for the communication of specific sorts of 

information.  Some might see red as an action color or blue as a color of status or gender.  

We all know in US culture that the appropriate color for boys is blue and girls pink.  

Although possibly not politically correct in today’s world such use of colors do have 

cultural foundations and do often aid in conveying complex information. For example, in 

trying to show gradients (e.g., ratings scales) cool colors can show “comfortable” atomic 



contacts while red signaled trouble spots. Selective use of bright, contrasting colors draws 

the eye very effectively to points of emphasis, but overuse of them can easily overwhelm 

the transfer of real information. Therefore relatively more pale, dim, or similar colors 

work very well for large amounts of ordinary or framework data.  

 

Color background is also an important issue.  A white background works well for most 

applications but a black background can provide the illusion of empty space giving the 

illusion of higher dimensionality.  However, for some applications in which the use of 

certain colors is important, or non-network information is being mapped on to the 

structure, a white background may be most effective.  

 

Node Selection 

 

It is often useful in analyzing networks to see what the network looks like when certain 

classes of nodes are removed. Sometimes this is done to remove nodes that are peripheral 

to a given research interest. Other times, it is to gauge the importance of the group in 

connecting others. Programs like UCINET’s NetDraw procedure make it easy to click 

groups of nodes on and off (as well as individuals). 

 

 

 

Ego Networks 

 



Another useful exercise is to examine the ego networks of particular nodes. By “ego 

networks” we mean the set of ties among the nodes connected to a focal individual (ego). 

This is particular useful when used to compare the structures around two different egos. 

For example, Figures xxx and xxx show the acquaintanceship networks two drug 

injectors in the city of Hartford, CT (Weeks et al).  

 
 

 
Figure xxx. Relatively open ego network of Puerto-Rican drug-injector. Large node 
is ego. 
 

 
Figure xxx. Relatively closed ego network of African-American drug-injector. Large 
node is ego. 
 
 
Strength of Ties 



 

There are several ways to communicate information about strength of ties. One way is to 

use the distance between points to communicate the strength of tie between the 

corresponding nodes. This is the ordination approach discussed above. As an example, 

we use a valued, 1-mode dataset derived from the Davis, Gardner and Gardner () women-

by-events data.1 The data were transformed using the Affiliations procedure in UCINET 

to create a woman-by-woman matrix in which the cells indicate the number of events that 

each pair of women attended in common. Figure xx shows an ordination of these data. A 

line is shown between two points if the corresponding women attended at least one social 

event in common.  
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1 For other ways of visualizing 2-mode data, consult the 2-mode chapter in this book. 



Figure xxx. Ordination plot. Distance is inversely proportional to strength of tie. 
 
We can make this diagram easier to read by suppressing lines representing weaker ties. 

For example, we might show a line between points only if the women attended at least 3 

events in common. As shown in Figure xx, this approach makes the 2-group structure of 

the data very evident.  
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Figure xxx. Ordination plot with lines corresponding to weak ties suppressed. 
 
Another approach to displaying strength of tie information is to make the thickness of 

lines proportional to the strength of tie. An example is shown in Figure xxx, in which the 

position of the nodes is determined by ordination. Essentially this diagram uses both 

physical distance and line thickness to communicate social proximity. One can see that 

the thicker lines tend to be within the left group and within the right group, but not 

between the groups. 
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Figure xxx. Ordination+thickness. Both physical distance and thickness of line are used 
to represent strength of ties among women. 
 
A different approach is to abandon ordination in favor of graph-theoretic layouts, in 

combination with dichotomizing the data so that only strong ties are considered. By 

systematically increasing the cutoff value for dichotomization, one can create a series of 

diagrams that portray increasingly strong ties (see Figures xx-yy).2  

 

                                                 
2 To reproduce these diagrams using UCINET, open the affiliations matrix in NetDraw, then use the Ties 
window to raise the cutoff level by 1 unit. Then press the layout button (a lightning bolt with an equals 
sign). Repeat several times until no more ties are visible. 
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Figure xxxa. Ties of strength 1 or greater. Graph-theoretic layout. 
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Figure xxxb. Ties of strength 2 or greater. Graph-theoretic layout. 
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Figure xxxc. Ties of strength 3 or greater. Graph-theoretic layout. 
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Figure xxxd. Ties of strength 4 or greater. Graph-theoretic layout. 
 
 
Multiple Relations 
 
In most studies, we have measured several different social relations on the same set of 

nodes. Programs like UCINET’s Netdraw make it easy to switch between relations while 

maintaining nodes in the same positions.  

 



For example, one of the standard UCINET datasets is the Bank Wiring room dataset. To 

collect these data, a researcher observed interactions among a set of employees in one 

room over a period of months, recording a number of social interactions such as playing 

games during breaks or having conflicts over such things as whether the room’s windows 

should be open or closed. Figure xxx shows game playing ties among the men, while 

Figure xxx shows conflict ties. Since the nodes remain fixed in the same positions, it is 

easy to see that game playing interactions occur within each of the two subgroups, but 

rarely between, and conflict interactions occur mostly between the two subgroups but 

also within the right-hand subgroup. Thus, it appears that while two groups exist, the left-

hand group is more cohesive.  

 

 
Figure xxx. Game-playing relation among Bank Wiring room employees. 
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Figure xxx. Conflict relation among Bank Wiring room employees. 
 
 
Changes over Time 

 

If network data are collected at multiple points in time, we can just treat each time point 

as a different relation and use all of the techniques described above. We can also create a 

kind of meta-display by showing relationships between the time points rather than actors. 

For example, Burkhardt collected advice giving relations among employees of a 

government agency at five points in time. Using the techniques described in Chapter xx, 

we can correlate the adjacency matrices corresponding to each time period. Table xx 

shows the correlation matrix obtained for the Burkhardt data. 

 
 T1 T2 T3 T4 T5 
T1 1.000 0.684 0.483 0.440 0.300 
T2 0.684 1.000 0.582 0.543 0.335 
T3 0.483 0.582 1.000 0.613 0.341 
T4 0.440 0.543 0.613 1.000 0.371 
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T5 0.300 0.335 0.341 0.371 1.000 
 
As you might expect, the correlations with time 1 (first row) decrease from left to right, 

indicating that the social structure is increasingly different with each passing time period. 

In addition, the largest correlations for any time period are usually with the two periods 

on either side of it, indicating a kind of orderly change from period to period. However, 

the change is not linear. A metric multidimensional scaling of this correlation matrix 

(Figure xx) shows a gap between time 2 and time 3, and another gap between time 4 and 

time 5, suggesting periods of incremental change punctuated by instances of more radical 

change.  
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Figure xx. Correlations among time periods for the Burkhardt data, represented via metric 
multidimensional scaling.  
 
To see how the network changed from Time 1 to Time 5, we can simply draw the two 

networks. Figures xx and yy show these two time points using a graph-theoretic layout 

and showing only strong ties. As we can see, at Time 1 the network shows evidence of 

three groups (left, bottom right and top right). At Time 2, the left and bottom right groups 

are still separate from each other, but the top left group seems to be in the process of 

being adopted by the other two groups. In addition we can see individual changes in 

position. For example, node R53 is a central figure in the bottom right group at Time 1, 

but becomes an isolate by Time 5. 

 
 
 

R53

Figure xx. Friendship ties at Time 1 for the Burkhardt data. 
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Figure yy. Friendship ties at Time 5 for the Burkhardt data. 
 
 
Another way to visualize change over time is to focus on the change in an actor’s position 

in the network over some period instead of concentrating on changes in the overall 

structure over time.  This can be readily accomplished by stacking the network matrices 

on top of one another and then subject this stacked matrix to correspondence analysis.  

Figure zz shows how the matrices for 2 time periods can be stacked on top of one 

another.  The data consists of ratings of reported interactions (on a scale from 0 to 10) at 

the beginning and end for people attending a workshop.    

 



    
 
Figure zz. Matrices (n x n) for 2 time periods for a workshop group stacked on top of one 
another to form an n x m matrix.  The ratings of interaction for time one are not shaded 
while the ratings of interaction fort time 2 are shaded.     
 
The stacked matrix can be analyzed using correspondence analysis in order to visualize 

changes in the structural position of each of the actors in the network across multiple time 

periods.  Figure zztop shows the changes in position for 2 time periods for reports of 

interaction for the workshop group.  The figure reveals a tendency for members of the 

group to move closer to one another over time.  The group appears to be coming more 

cohesive and in fact density does increase between Time 1 (5.90) to Time 2 (6.13).   Lisa, 

in particular, makes a movement from the groups periphery to its’ core followed to a 

smaller extent by Lynn.      

 



 

 
 
Figure zztop.  A graph of the changes in network position between 2 time periods using 
correspondence analysis. 
 
Multiple time points can also be visualized in that multiple matrices representing time 

points can be stacked and then visualized using correspondence analysis. Figure zztop2 is 

a graph showing vote co-occurrences for Supreme Court Justices by year over a 10-year 

period.  The graph shows the spatial location of each of the justices in each of the years.  

Figurezztop3 shows the spatial movement for Rehnquist over the course of the 10 years.  

What this graph clearly reveals is that Rehnquist himself has often entered what one 

might think of as swing vote spatial territory in the course of his voting behavior.  In 

Figure zztop3 voting blocks (i.e., conservative, swing, liberal), as identified by media 

sources, are encompassed by convex hulls.  Here the the extreme edges of each of the 

blocks can be easily determined.  For example, Scalia over the 10-year period 

consistently defines the extremes of the conservatives while Stevens consistently defines 



the extremes of the liberals. Although Kennedy and O’Connor were considered swing 

votes there is a definite bias towards the conservative side of the graph.           

 

 
 

   
Figure zztop2.  Stacked correspondence analysis of the co-occurrence matrices for the 10 
years of voting behavior among the Supreme Court Justices.    
 



 
 
Figure zztop3.  Stacked correspondence analysis of the co-occurrence matrices for the 10 
years of voting behavior among the Supreme Court Justices with Renquists’ spatial 
movements connected over time.    
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Figurezztop4.  Stacked correspondence analysis of all time periods with conservative, 
swing and liberal judges identified as determined from media sources with members 
encompassed by convex hulls.   
 
Visualizing Large Networks 
 
Visualizing large networks is a skill in its own right. Clearly one approach is to apply the 

reduction techniques discussed above and then visualize either fragments of the network 

or aggregated versions of the network. The nodes that make up the aggregated network 

can then visualized separately. The software program Pajek has been specifically 

designed to visualize large networks and has a number of features which support this kind 

of approach.  

 

If the network is well structured it is still possible to produce revealing visualization 

which help in the analysis of large networks. In this case we are not so concerned with 

individual actors but with the overall pattern. This is analogous to looking at a galaxy 

where we are not concerned about the position of individual stars but by the overall spiral 

pattern that they exhibit together.  

 

The general approach is to try and peel away actors (and if valued edges) which detract 

from the underlying structure. In the first instance since we are not concerned with the 

individual actors any display should not include labels. We now demonstrate the general 

approach using the software package UCINET. Figure 12.2 is a network of just under 



1000 edges are valued between 1 and 28. The labels have been removed and the nodes 

are randomly arranged.[that’s cheating] 

 
 
 

Figure 12.2 
This is clearly unsatisfactory and of no use in helping understand the data. As a first step 

we reduced the number of edges by dichotomizing at a value of 6. The components of 

this network were then computed. There were now a large number of isolates and small 

components. The largest component had 203 actors, while the next largest had just 11. 

The original network consisted of one component so all the smaller components are 

linked into the large component at some level. We can therefore conclude that the large 

component is highly representative of the general underlying structure. This component 

can be seen in Figure 12.3. 



 
 
 

Figure 12.3 
 

We are now able to see some of the underlying structure of the network. There are two 
main groups and a third smaller group (at the top) that is forming at a small distance from 
the larger groups. 
 
 
 
 
 
 
 

 



 


